Simple nonunifilar binary word generators

Sarah Marzen

June 1, 2013

Outline

* Motivation
* Results
* Simple nonunifilar source (SNS)
* Variation on the SNS
* A different set of nonunifilar binary word generators (preliminary)
* Future work

Motivation

* ε-machines are most useful when we have no understanding of the system-- perfect for biological modeling
* Problem: neurobiological data is highly subsampled.

Motivation

* These problems can maybe be couched as nonunifilar HMMs.

Active

Outline: Results

* Simple nonunifilar source (the one studied in class)
* Simple nonunifilar source with adjustable transition probabilities
* Attempt to extend to continuous case
* Binary subsampled HMMs of a particular form, to be described

SNS

$$
T^{(0)}=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right) \quad T^{(1)}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad \pi=\binom{\frac{1}{2}}{\frac{1}{2}}
$$

SNS

SNS

$$
\begin{gathered}
\pi_{n}=\frac{1}{4} \frac{n+1}{2^{n}} \\
M_{n-1, n}=\frac{n+1}{2 n} \\
C_{\mu}=-\sum_{n=0}^{\infty} \pi_{n} \log _{2} \pi_{n}=2.71 \mathrm{bits} \\
h_{\mu}=\sum_{n=0}^{\infty} \pi_{n} H\left[M_{n, 0}\right]=0.678 \mathrm{bits}
\end{gathered}
$$

SNS:

E from causal shielding

$1 \mid 1 / 2$

$$
\begin{equation*}
E=\sum_{L=0}^{\infty} h_{\mu}(L)-h_{\mu} \simeq 0.147 \mathrm{bits} \tag{0}
\end{equation*}
$$

$$
T^{(0)}=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right) \quad T^{(1)}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad \pi=\binom{\frac{1}{2}}{\frac{1}{2}}
$$

$$
C_{\mu}^{+}=C_{\mu}^{-}, \chi^{+}=\chi^{-}, \Xi=0
$$

SNS v. 2

$$
T^{(1)}=\left(\begin{array}{cc}
1-p & 0 \\
p & 1-q
\end{array}\right), T^{(0)}=\left(\begin{array}{cc}
0 & q \\
0 & 0
\end{array}\right), \pi=\binom{\frac{q}{p+q}}{\frac{p}{p+q}}
$$

SNS v. 2

Same recurrent causal states!

$$
M_{n-1, n}=\frac{1^{T}\left(T^{(1)}\right)^{n} T^{(0)} \pi}{1^{T}\left(T^{(1)}\right)^{n-1} T^{(0)} \pi}=\frac{p(1-q)^{n}-(1-p)^{n} q}{p(1-q)^{n-1}-q(1-p)^{n-1}}
$$

SNS v. 2

$$
\pi_{n}=\frac{p(1-q)^{n}-q(1-p)^{n}}{p-q} \times \frac{p q}{p+q}
$$

SNS v. 2

SNS v. 2:

 Calculating E from causal shields

SNS v. 2

SNS v. 2

SNS v. 2:
Time reversed process?
$1 \mid 1-p($ A $\underset{0 \mid q}{\stackrel{1 \mid p}{\stackrel{~}{2}} \text { B }} 1 \mid 1-q$

SNS v. 2:
 Attempt at continuous time

Continuous time

$$
\frac{d}{d t}\binom{p(A, t)}{p(B, t)}=\left(\begin{array}{cc}
-k_{A B} & k_{B A} \\
k_{A B} & -k_{B A}
\end{array}\right)\binom{p(A, t)}{p(B, t)}
$$

Discretized time

$$
\begin{aligned}
& \binom{p(A, t+\Delta t)}{p(B, t+\Delta t)}=\left(\begin{array}{cc}
1-k_{A B} \Delta t & k_{B A} \Delta t \\
k_{A B} \Delta t & 1-k_{B A} \Delta t
\end{array}\right)\binom{p(A, t)}{p(B, t)} \\
& \Rightarrow p=k_{A B} \Delta t, q=k_{B A} \Delta t
\end{aligned}
$$

SNS v. 2

$$
\begin{aligned}
\pi_{t} \Delta t & =\lim _{\Delta t \rightarrow 0, n \Delta t=t} \pi_{n}\left(p=k_{A B} \Delta t, q=k_{B A} \Delta t\right) \\
\pi_{t} & =\frac{k_{A B} k_{B A}}{k_{A B}+k_{B A}} \frac{k_{A B} e^{-k_{B A} t}-k_{B A} e^{-k_{A B} t}}{k_{A B}-k_{B A}}
\end{aligned}
$$

SNS v. 2 : Continuous time stat. comp.

SNS v. 2

$$
\begin{aligned}
h_{t} & =H\left[\frac{k_{A} k_{B}\left(k_{A} e^{-k_{B} t}-k_{B} e^{-k_{A} t}\right)}{k_{A}^{2} e^{-k_{B} t}-k_{B}^{2} e^{-k_{A} t}} \Delta t\right] \\
& =\frac{k_{A} k_{B}\left(k_{A} e^{-k_{B} t}-k_{B} e^{-k_{A} t}\right)}{k_{A}^{2} e^{-k_{B} t}-k_{B}^{2} e^{-k_{A} t}} \Delta t\left(\frac{1}{\log 2}-\log _{2} \frac{k_{A} k_{B}\left(k_{A} e^{-k_{B} t}-k_{B} e^{-k_{A} t}\right)}{k_{A}^{2} e^{-k_{B} t}-k_{B}^{2} e^{-k_{A} t}}\right) \\
& -\frac{k_{A} k_{B}\left(k_{A} e^{-k_{B} t}-k_{B} e^{-k_{A} t}\right)}{k_{A}^{2} e^{-k_{B} t}-k_{B}^{2} e^{-k_{A} t}} \Delta t \log _{2} \Delta t
\end{aligned}
$$

Not sure what to do with these weird factors of time resolution-- they seem to suggest the entropy rate is 0 .

SNS v. 2 : Excess entropy in cont. time?

* Did not unifilarize the time-reversed epsilon machine, so did not get a closed form analytic expression for excess entropy
* However, if excess entropy is mainly coming from the rule "a 0 must be followed by a $1^{\prime \prime}$ then

$$
E \sim \frac{k_{A B}^{2} k_{B A}^{2} \Delta t}{\left(k_{A B}+k_{B A}\right)^{3}}
$$

SNS v. 2

* Excess entropy and statistical complexity capture very different ideas.
* E captures how often you are synchronized to internal states
* Stat. comp. captures how long-tailed the probability distribution over causal states is
* Going to continuous time maybe introduces an uncountable infinity of causal states, differential entropies (negative stat. comp.???), discontinuities in stat. comp. vs. parameters
* E captures relaxation of probability distribution over all mixed states to stationarity

Last nonunifilar model

\qquad

Group 0
Group 1

Fully connected, randomly chosen kinetic rates between states

Last nonunifilar model

Same recurrent causal states!

$$
M_{n-1, n}=\frac{1^{T}\left(T^{(1)}\right)^{n} T^{(0)} \pi}{1^{T}\left(T^{(1)}\right)^{n-1} T^{(0)} \pi}
$$

Preliminary results

This n is \# of hidden states

$$
\begin{aligned}
& \pi_{n}=\frac{1^{T}\left(T^{(1)}\right)^{n} T^{(0)} \pi}{1^{T}\left(I-T^{(1)}\right)^{-1} T^{(0)} \pi} \\
& h_{n}=H\left[\frac{1^{T}\left(T^{(1)}\right)^{n+1} T^{(0)} \pi}{1^{T}\left(T^{(1)}\right)^{n} T^{(0)} \pi}\right]
\end{aligned}
$$

Future directions

* Finish up calculating stuff for the last nonunifilar model.
* Maybe this has a practical application-- you can estimate the number of hidden states by knowing the average transition rates and calculating crypticity? We'll see.
* More nonunifilar models, continuous time, everything.

