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Motivation

✤ ɛ-machines are most useful when we have no understanding of the 
system-- perfect for biological modeling

✤ Problem: neurobiological data is highly subsampled.

fMRI, EEG, ECOG, 
electrophysiology

Observe 
behavior

Physics is 
fun!



Motivation

✤ These problems can maybe be couched as nonunifilar HMMs.

Asleep

Active



Outline: Results

✤ Simple nonunifilar source (the one studied in class)

✤ Simple nonunifilar source with adjustable transition probabilities

✤ Attempt to extend to continuous case

✤ Binary subsampled HMMs of a particular form, to be described
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SNS:
Stat. complexity and entropy rate
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SNS:
E from causal shielding
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SNS:
Time reversed process?
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SNS v. 2
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SNS v. 2

Same recurrent causal states!
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SNS v. 2
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SNS v. 2



SNS v. 2:
Calculating E from causal shields
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SNS v. 2:
Time reversed process?
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SNS v. 2:
Attempt at continuous time
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SNS v. 2
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Statistical complexity: differential 
entropy of this probability distribution?
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SNS v. 2:
Continuous time stat. comp.



SNS v. 2
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Not sure what to do with these weird factors of time 
resolution-- they seem to suggest the entropy rate is 0.



SNS v. 2:
Excess entropy in cont. time?

✤ Did not unifilarize the time-reversed epsilon machine, so did not get a 
closed form analytic expression for excess entropy

✤ However, if excess entropy is mainly coming from the rule “a 0 must 
be followed by a 1” then
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SNS v. 2

✤ Excess entropy and statistical complexity capture very different ideas.

✤ E captures how often you are synchronized to internal states

✤ Stat. comp. captures how long-tailed the probability distribution over 
causal states is

✤ Going to continuous time maybe introduces an uncountable infinity 
of causal states, differential entropies (negative stat. comp.???), 
discontinuities in stat. comp. vs. parameters

✤ E captures relaxation of probability distribution over all mixed states 
to stationarity



Last nonunifilar model

A B1 B2 Bn...

Group 0 Group 1

Fully connected, randomly chosen 
kinetic rates between states



Last nonunifilar model
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Preliminary results
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Future directions

✤ Finish up calculating stuff for the last nonunifilar model.

✤ Maybe this has a practical application-- you can estimate the number 
of hidden states by knowing the average transition rates and 
calculating crypticity?  We’ll see.

✤ More nonunifilar models, continuous time, everything.


